

AB

# EDUC 427.04: STEM Education (K-12) Summer 2023

| Section | Instructor     | Time         | Location | Email                      |
|---------|----------------|--------------|----------|----------------------------|
| S01     | Shaily Bhola   | M-F 1-3:50pm | EDT01    | shaily.bhola@ucalgary.ca   |
| S02     | Alison Turner  | M-F 1-3:50pm | EDC171   | alison.turner@ucalgary.ca  |
| S03     | Amber Hartwell | M-F 1-3:50pm | EDC351   | amber.hartwell@ucalgary.ca |
| S04     | Rahim Pira     | M-F 1-3:50pm | SS012    | rnpira@ucalgary.ca         |

Class Dates: Monday through Friday, July 10, 2023-July 21, 2023

Last Day to Add/Drop/Swap: Due to the non-standard dates associated with this program, please check your Student Centre for the important dates pertaining to your section.

Pre-requisite: Due to the multiple pathways in the Bachelor of Education, please consult Undergraduate Programs in Education for questions related to pre-requisite courses.

Office Hours: By appointment only

Email: Students are required to use a University of Calgary (@ucalgary.ca) email address for all correspondence.

#### Course Description

EDUC 427 STEM Education provides an introduction to key elements of Science, Technology, Engineering, and Mathematics (STEM) pedagogy and curriculum. The intent of the course is to foster an understanding of how STEM informs and shapes interdisciplinary, design-focused, inquiry-based teaching and learning and the role of STEM in culture and society.

#### Learning Outcomes

Course participants will:

- 1) Develop a foundational understanding of the nature of discourse in STEM disciplines as related to innovative teaching and learning, including STEM literacy, STEM identity, and transferring understandings across disciplines;
- 2) Understand and appreciate how the engineering design process can contribute to teaching and learning mathematics and science;
- 3) Design learning environments in STEM;
- 4) Identify STEM concepts and make explicit the connections across disciplines; and,
- 5) Apply introductory literature related to the teaching of STEM with an emphasis on the implementation of resources, the classroom environment, diverse and innovative methods of teaching within STEM, and an introduction to the Alberta Programs of Study.

# Course Design and Delivery

The course consists of three modules:

• LT1: Building Understanding of STEM Mathematical Concepts;

- LT2: Building Understanding of STEM concepts through a Design Approach to Robotics;
- LT3A: Building Understanding of STEM concepts through a STEM Unit of Study; LT3B: Building Understanding of STEM components through Reflection.

The course is delivered through a design-based and inquiry-focused approach where learning intent, expectations and assessment processes are made visible and transparent. Participants are crucial to the knowledge building in this course. D2L is an important component of the course where learnings are made visible and shared. Assessment is formative and summative based on rubrics for the three Learning Tasks.

# Required Readings: [on D2L]

Davis, B., Francis, K., & Friesen, S. (2019). STEM Education by Design. <u>https://ebookcentral-proquest-com.ezproxy.lib.ucalgary.ca/lib/ucalgary-ebooks/detail.action?docID=5763030</u>

Metz, M. (2014) What does 2x3x4 mean? (unpublished) [in D2L]

Ontario Ministry of Education. (2014). K-12: Paying attention to spatial reasoning. Queen's Printer for Ontario. Available <u>http://www.edu.gov.on.ca/eng/literacynumeracy/LNSPayingAttention.pdf</u>[in D2L]

Piggott, J. (2014). Rich tasks and contexts. Retrieved from http://nrich.maths.org/5662 [in D2L]

# Lego Mindstorm

Francis, K. & Poscente, M. (2017). Building number sense with Lego Robots. *Teaching Children Mathematics 23*(5), 310-12. doi: 10.5951/teacchilmath.23.5.0310 Available: <u>https://www-jstor-org.ezproxy.lib.ucalgary.ca/stable/10.5951/teacchilmath.23.5.0310</u>

# Minecraft

Stranger, D. (2021). *New Minecraft world to teach students about Anishinaabe culture*. Retrieved from <u>https://www.aptnnews.ca/national-news/new-minecraft-world-to-teach-students-about-anishinaabe-culture/</u>

# **Recommended Resources:**

To find e-books in the library, enter the title in the *search box* on the library's home page at <u>http://library.ucalgary.ca/</u>

Alberta Education (2015). Telling our school stories 2.0: Moving forward with high school redesign [an interim report for 2014/2015]. Edmonton: Alberta Government. Available: <u>https://open.alberta.ca/publications/telling-our-school-stories-2-0-moving-forward-with-high-school-redesign</u>

Francis, K., & Rothschuh, S. (2022). *Robot challenges: Getting started*. <u>https://stem-education.ca/?page\_id=350</u>

Gura, M. (2011). *Getting Started with Lego Robotics: A Guide for K-12 Educators*. Eugene, Or: International Society for Technology in Education. [on reserve in Doucette Library]

- Moss, J., Bruce, C. D., Caswell, B., Flynn, T., & Hawes, Z. (2016). Taking shape: Activities to develop geometric and spatial thinking (1<sup>st</sup> edition). Toronto: Pearson Canada. [on reserve in Taylor Digital Library]
- Vasquez, J.A. Sneider, C. & Comer, M. (2013) STEM lesson essentials: Integrating Science, Technology, Engineering and Mathematics. Portsmouth, NH: Heinemann. [on reserve in Taylor Digital Library]
- Resnick, M. (2012). Let's teach kids to code. Retrieved from http://www.ted.com/talks/mitch\_resnick\_let\_s\_teach\_kids\_to\_code
- Truesdell, P. (2014). The engineering design process. In Engineering essentials for STEM instruction: How do I infuse real-world problem solving into science, technology, and math? (p. 7-15) Alexandria, VA: ASCD. [library e-version available] <u>http://ebookcentral.proquest.com.ezproxy.lib.ucalgary.ca/lib/ucalgaryebooks/reader.action?ppg=12&docID=1709532&tm=1500497319721</u>

#### Software:

Free software downloads are available for:

EV3 - <u>https://education.lego.com/en-us/downloads/mindstorms-ev3/software</u> Minecraft Education <u>https://education.minecraft.net/en-us/get-started/download</u>

| LEARNING TASK | LEARNING TASK DESCRIPTION OF LEARNING TASK                                                                    |             |
|---------------|---------------------------------------------------------------------------------------------------------------|-------------|
|               |                                                                                                               | FINAL GRADE |
|               | <i>LT1 – Building Understanding of STEM Mathematical</i><br><i>Concepts</i> [Team work]                       |             |
| LT1           | Due: July 12 in D2L Discussions and Dropbox                                                                   | 35%         |
|               | Rubric Formative [in-class] assessment by instructor;<br>Rubric Summative assessment [Dropbox] by instructor. |             |
|               | LT2 – Building Understanding of STEM concepts                                                                 |             |
| I TO          | through a Design Approach to Robotics [Team work]                                                             |             |
| LTZ           | Due: July 17 in Dropbox                                                                                       | 20%         |
|               | Rubric Formative [in-class] assessment by instructor;                                                         |             |
|               | Rubric Self-assessment [Dropbox] with                                                                         |             |
|               | Rationale/Evidence.                                                                                           |             |
|               | LT3A – Building Understanding of STEM concepts<br>through A STEM Unit of Study. [35%]                         |             |
| LT3           |                                                                                                               |             |
|               | Due July 21 in D2L Discussions and Dropbox [Team work]                                                        | 45%         |
|               | Rubric Formative [in-class] assessment by instructor;<br>Rubric Summative assessment [Dropbox] by instructor. |             |

#### Learning Tasks Overview

| LT3B – Building Understanding of STEM components<br>through Reflection [10%] [Individual]                             |  |
|-----------------------------------------------------------------------------------------------------------------------|--|
| Due: July 21 in Dropbox                                                                                               |  |
| Rubric Formative [in-class] assessment by instructor;<br>Rubric Self-assessment with Rationale/Evidence<br>[Dropbox]. |  |

# Schedule

# **Concept Study – Mathematics:**

|       | Topics/Themes                              | Readings and Assignments                                                                                         |
|-------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Day 1 | Introduction to<br>STEM                    | Come prepared to discuss: Davis, Francis & Friesen. Chapter 1<br>STEM: Disciplinarity within transdisciplinarity |
|       |                                            | Form Groups for LT1                                                                                              |
|       |                                            | Work on LT1                                                                                                      |
| Day 2 | Building<br>Conceptual<br>Understanding of | Come prepared to discuss: Davis, Francis, & Friesen Chapter 2<br>Learning: Acquiring within participating        |
|       | Mathematics                                | Come prepared to discuss: <i>Paying Attention to Spatial Reasoning</i>                                           |
|       |                                            | Work on Learning Task 1                                                                                          |
| Day 3 | Building<br>Conceptual<br>Understanding of | Come prepared to discuss: Davis, Francis & Friesen Chapter 3<br>Mathematics: Calculating within Modeling         |
|       | Mathematics                                | Come prepared to discuss: What does 2x3x4 mean?                                                                  |
|       |                                            | Work on LT1                                                                                                      |
|       |                                            | Post LT1 in D2L/Dropbox                                                                                          |
|       |                                            | Present in small groups                                                                                          |

# Technology (Robotics and/or Programming):

|       | <b>Topics/Themes</b> | Readings and Assignments                                    |
|-------|----------------------|-------------------------------------------------------------|
| Day 4 | From Using to        | Come prepared to discuss: Davis, Francis, & Friesen Chapter |
|       | Designing            | 4 Technology: Using within designing                        |
|       |                      |                                                             |
|       |                      | Intro to LT2                                                |
|       |                      |                                                             |
|       |                      | Work on LT2                                                 |
|       |                      |                                                             |
|       |                      |                                                             |

|       | <b>Topics/Themes</b> | Readings and Assignments               |
|-------|----------------------|----------------------------------------|
| Day 5 | From Applying to     | Work on LT2                            |
|       | Innovating           |                                        |
| Day 6 | Design Challenge     | Work on LT2                            |
| Day 7 | Design Challenge     | Present Learning Task 2 for Assessment |
|       |                      | Intro to LT3AB<br>Work on LT3A         |

#### **STEM Integration:**

|        | <b>Topics/Themes</b>      | Readings and Assignments                                                                                       |
|--------|---------------------------|----------------------------------------------------------------------------------------------------------------|
| Day 8  | From Method to<br>Inquiry | Come prepared to discuss: Davis, Francis & Friesen Chapter 6:<br>Science Method within inquiry                 |
|        |                           | Work on LT3A                                                                                                   |
| Day 9  | STEM                      | Come prepared to discuss: Davis, Francis & Friesen Chapter 7:<br>STEM education: From recipient to contributor |
|        |                           | Work on LT3AB                                                                                                  |
| Day 10 | Teaching STEM             | Work on LT3AB                                                                                                  |
|        |                           | STEM Showcase                                                                                                  |

• Schedule may change in accordance with course intent and expectations.

# Learning Tasks

# LT1 – Building Understanding of Mathematical Concepts (35%)

LT1 introduces you to how a rich and authentic problem-solving approach builds conceptual understanding of mathematics. By the end of this unit you will be able to:

- Identify and create mathematical concepts within rich, inquiry focused and authentic problems.
- Make these concepts explicit to STEM components and to the Alberta Programs of Study
- Make connections within and across mathematical concepts.
- Use technology for conveying mathematical concepts.

With instructor guidance and examplars, you will research, develop and present a rich, real-to-theworld-of-the-child problem [K-9] that authentically incorporates the mathematical concepts of multiplication and division operations.

#### **LT1 Expectations**

Create a narrated and animated PP for teachers as a professional development opportunity for them to learn how a rich and authentic problem-solving approach builds conceptual understanding of mathematics. This PP:

- Presents the problem/task through an Essential Question [EQ] and includes names of your team;
- Explains the rationale for why the problem is rich, inquiry focused and authentic to the world of the student;
- Provides rationale for multiple solutions;
- Identifies two concepts contained in the problem: multiplication and another mathematical concept.
- States key understandings of the concepts [one concept per slide]
- Provides one extension problem embedded in the problem that challenges and strengthens conceptual understandings (one slide).

The task will be rich, mathematically complex, and academically challenging. Viable solution(s) are explained clearly and are insightfully identified within the solutions.

| Chosen<br>Task/Problem                 | Excellent (A)                                                                                                                                                                                               | Good (B)                                                                                                                                                                                            | Satisfactory (C)                                                               | Unsatisfactory                                                          |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Identification                         | States team<br>members,<br>problem/task, and<br>source is clearly<br>stated; Accurately<br>APA referenced.                                                                                                  | States team<br>members,<br>problem/task, and<br>source is APA<br>referenced with<br>minor errors.                                                                                                   | unclear;<br>Referenced but not<br>APA.                                         | Team members not<br>identified. Problem<br>not stated, or<br>reference. |
| Rationale for<br>Challenge<br>richness | Rationale is<br>convincing, specific<br>and insightful.<br>Explains how task<br>is rich,<br>mathematically<br>complex,<br>academically,<br>intellectually and<br>personally<br>challenging for<br>students. | Rationale is<br>convincing, but<br>more details are<br>needed. Or task<br>has potential for<br>being rich but<br>lacks mathematical<br>depth and<br>complexity. Task<br>is somewhat<br>challenging. | Rationale is<br>ambiguous or task<br>is procedural and<br>rote.                | No rationale or the<br>task is not<br>challenging or<br>irrelevant.     |
| Solution                               | Viable solution(s)<br>with accurate<br>mathematics are<br>explained clearly<br>and concisely. The<br>math concepts are<br>insightfully<br>identified within the<br>solutions.                               | Viable solution(s)<br>are explained<br>clearly, concisely<br>and are accurate.                                                                                                                      | A solution is<br>inadequately<br>explained and/or<br>solution is<br>incorrect. | No Solution                                                             |

#### LT1 Formative and Summative Assessment Rubric:

| Mathematical<br>Concept #1<br>Multiplication | Excellent (A)                                                                                                                | Good (B)                                                                                                   | Satisfactory (C)                                                                                                                                               | Unsatisfactory                                                     |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Modelling                                    | Mathematical<br>model of concept is<br>insightful and<br>accurately depicted,<br>illustrated within<br>the task.             | Mathematical<br>concept is<br>illustrated, but<br>connection to the<br>task is unclear.                    | Mathematical<br>concept is<br>illustrated and<br>generic (without<br>explicit<br>connections to the<br>problem).                                               | Mathematical<br>concept is not<br>illustrated or is<br>inaccurate. |
| Explanations                                 | Mathematical<br>concept is<br>eloquently and<br>accurately<br>explained.<br>Animations and<br>images enhance<br>explanation. | Mathematical<br>concept is<br>explained within<br>the problem.<br>Images enhance<br>explanation.           | Mathematical<br>concept is not or<br>appears not to be<br>related to the<br>mathematics<br>problem.<br>Images and/or<br>animation detract<br>from explanation. | No concept<br>identified                                           |
| Understandings                               | Key<br>feature(s)/element(s), about the<br>concepts, that the<br>learners should<br>understand are<br>clearly stated.        | Feature(s)/element<br>(s), about the<br>concepts, that the<br>learners should<br>understand are<br>stated. | Feature(s)/element(<br>s), about the<br>concepts, that the<br>learners should<br>understand are<br>inadequately<br>stated.                                     | No stated<br>understandings                                        |

| Mathematical<br>Concept #2 | Excellent (A)                                                                                                                | Good (B)                                                                                         | Satisfactory (C)                                                                                                                                                            | Unsatisfactory                                                     |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Modelling                  | Mathematical<br>model of concept is<br>insightful and<br>accurately depicted,<br>illustrated within<br>the task.             | Mathematical<br>concept is<br>illustrated, but<br>connection to the<br>task is unclear.          | Mathematical<br>concept is<br>illustrated and<br>generic (without<br>explicit<br>connections to the<br>problem).                                                            | Mathematical<br>concept is not<br>illustrated or is<br>inaccurate. |
| Explanations               | Mathematical<br>concept is<br>eloquently and<br>accurately<br>explained.<br>Animations and<br>images enhance<br>explanation. | Mathematical<br>concept is<br>explained within<br>the problem.<br>Images enhance<br>explanation. | Mathematical<br>concept is not<br>explained or<br>appears not to be<br>related to the<br>mathematics<br>problem. Images<br>and/or animation<br>detract from<br>explanation. | No concept<br>identified                                           |

| Mathematical<br>Concept #2 | Excellent (A)                                                                                                          | Good (B)                                                                                                   | Satisfactory (C)                                                                                                           | Unsatisfactory              |
|----------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Understandings             | Key<br>feature(s)/element(s), about the<br>concepts, that the<br>learners should<br>understand are<br>clearly stated.  | Feature(s)/element<br>(s), about the<br>concepts, that the<br>learners should<br>understand are<br>stated. | Feature(s)/element(<br>s), about the<br>concepts, that the<br>learners should<br>understand are<br>inadequately<br>stated. | No stated<br>understandings |
| Extension<br>Problems      | The two or three<br>extension problems<br>provide challenge<br>and deepen<br>understandings of<br>identified concepts. | The two or three<br>practice problems<br>provided address<br>understandings of<br>identified<br>concepts.  | The two or three<br>practice problems<br>provided do not<br>address<br>understandings of<br>identified concepts.           | No practice<br>problems     |

| Presentation<br>details | Excellent (A)                                                     | Good (B)                                                                       | Satisfactory (C)                                                               | Unsatisfactory                                                                           |
|-------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Number of Slides        | Contains eight to<br>ten slides that<br>follow<br>specifications. | Contains more (or<br>less) than eight<br>slides that follow<br>specifications. | Contains more (or<br>less) than eight<br>slides that follow<br>specifications. | There are not eight<br>slides and<br>specifications are<br>not consistently<br>followed. |
| Style and Design        | Style and design<br>enhances<br>presentation.                     | Style and design<br>supports<br>presentation.                                  | Style and design<br>compromise<br>presentation.                                | Style and design<br>compromise<br>presentation.                                          |

#### **Additional Readings for Mathematics Problems:**

- Banks, R. B. (2012). *Slicing pizzas, racing turtles, and further adventures in applied mathematics* (Reissue edition.). Princeton, NJ: Princeton University Press. [e-book in library] <u>https://ebookcentral-proquest-com.ezproxy.lib.ucalgary.ca/lib/ucalgary-ebooks/detail.action?docID=894679</u>
- Banks, R. B. (2013). *Towing icebergs, Falling dominoes, and other adventures in applied mathematics* (Reissue edition.). Princeton, NJ: Princeton University Press.[e-book in library] <a href="http://ebookcentral.proquest.com.ezproxy.lib.ucalgary.ca/lib/ucalgary-ebooks/detail.action?docID=1084830">http://ebookcentral.proquest.com.ezproxy.lib.ucalgary.ca/lib/ucalgary-ebooks/detail.action?docID=1084830</a>
- Benson, S., Addington, S., Arshavsky, N., Cuoco, A., Goldenberg, E. P., & Karnowski, E. (2004). Ways to think about mathematics: Activities and investigations for Grade 6-12 teach. Thousand Oaks, Calif: Corwin Press Inc. [on reserve in Doucette library]
- Bolt, B. (1991). *Mathematics meets technology*. Cambridge; New York: Cambridge University Press. [on reserve in Doucette library]
- Dodsworth, D. (1998). Routine Mathematical Problems and Mathematical Inquiry in an Elementary Classroom: Tensions and Struggles <u>https://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape7/PQDD\_0032/NQ46832.pdf</u>

- Gardiner, T. (1996). *Mathematical challenge*. New York: Cambridge University Press. [on reserve in Doucette library]
- Gardiner, T. (2002). Senior mathematical challenge: The UK national mathematics contest 1988-1996. Cambridge ; New York: Cambridge University Press. [on reserve in Doucette library]
- Galileo Educational Network. (2015). *Math.* Available: <u>https://galileo.org/math-fairs/math-fair-problems/</u>
- Hamilton, G. (2015). Math pickle. Available: http://mathpickle.com
- Moscovich, I. (2006). *The big book of brain games: 1000 playthinks of art, mathematics & science*. New York, NY: Workman. [on reserve in Doucette library]
- Moskowitz. (2003). Adventures in mathematics (1 edition.). River Edge, N.J: World Scientific Publishing. [e-book in library] <u>http://ebookcentral.proquest.com.ezproxy.lib.ucalgary.ca/lib/ucalgaryebooks/detail.action?docID=1681495</u>
- Shasha, D. (1992). *Codes, puzzles and conspiracy: A new mathematical thriller from Dr. Ecco.* New York, NY: W H Freeman. [in library]
- Shasha, D. (1998). *The puzzling adventures of Dr. Ecco*. Mineola, NY: Dover Publications. [on reserve in Doucette library]
- GENA. (2014). *Inquiry and assessment*. Retrieved from <u>https://galileo.org/resource/inquiry-and-assessment/</u>

#### LT2 – Building Understanding of STEM through the Engineering Design Process (20%)

LT2 engages in robotics tasks and makes explicit the conceptual understandings of STEM components and their alignments with curricular outcomes. By the end of this module, you will be able to:

- Design, program and/or build a robot to complete an assigned task using the engineering design process;
- Make explicit the conceptual understandings of STEM components and their alignment with curricular outcomes in the process of engineering design.

| Design challenge              | Excellent (A)                                                                                                                                                                 | Good (B)                                                                                                                                           | Satisfactory (C)                                                                                                                                       | Unsatisfactory                                           |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Challenge                     | Created a rich,<br>authentic, and<br>inquiry-based<br>STEM challenge,<br>that centralizes the<br>theme of <i>Build a</i><br><i>Better World</i> .                             | Created a STEM<br>challenge that is<br>rich and authentic,<br>that touches upon<br>the theme of <i>Build</i><br><i>a Better World</i> .            | Created a STEM<br>challenge but does<br>not accurately<br>reflect the<br>expectation for this<br>challenge. May not<br>have all needed<br>information. | Did not create<br>STEM challenge.                        |
| Engineering<br>Design Process | Clearly articulates<br>and illustrates how<br>learners will<br>recognize and apply<br>the components of<br>the engineering<br>design process as<br>found in the<br>challenge. | Articulates how<br>learners will<br>recognize and<br>apply the<br>components of the<br>engineering design<br>process as found<br>in the challenge. | Articulates an<br>engineering design<br>process that is<br>generic and/or<br>superficial to the<br>challenge.                                          | Does not articulate<br>an engineering<br>design process. |

#### LT2 Formative and Summative Assessment Rubric:

# LT3A – Building Understanding of STEM concepts through an Inquiry Focused STEM unit of study

LT3A provides the opportunity to design a rich, authentic inquiry-based STEM unit of study for your classroom and showcase your unit in a digital poster.

You may build upon on the robot you built and programmed in LT2, or use another tool/software to address the theme: *Make the World a Better Place*. This should be an interdisciplinary challenge. This could be a prototype that you would present to your students as an exemplar before they set out to design their own robot on this theme. Then, create a digital poster showcasing this unit of study which can be shared with other STEM teachers.

By the end of this module, you will be able to:

- Apply the engineering design process to develop a STEM inquiry unit of study;
- Build on your understanding of the mathematics and science concepts [from LT2] contained within your STEM inquiry;
- Begin to articulate classroom teaching strategies: e.g. group/individual work, collaboration and communication of assignments, developing habits of mind;
- Appreciate how integrating design processes are important beyond the STEM disciplines.
- Learn how to work as a team to develop inquiry teaching approaches.
- Present your unit of study in a digital poster.

On the final day of classes, you will present your prototype and your digital poster at the STEM showcase.

#### Digital Poster Details: [Exemplars will be provided]

The purpose of this poster is to describe and illustrate the design of the LT3A teaching and learning experience. You will create a digital poster to accompany your challenge to illustrate how you would teach this project. Consider the audience for the poster to be teachers and administrators.

The poster:

- States the task in which your students will engage;
- Describes and illustrates the engineering design process specific to the task;
- Identifies, shows, and develops the STEM concepts intrinsic to the task;
- Identifies and models TWO mathematics concepts and ONE science concept that are addressed in your Robot Design Process;
- Attends to how learners will be assessed;
- Attends to how learners will engage in the task.

#### LT3A Formative and Summative Assessment Rubric:

| Issue/Problem/<br>Question | Excellent (A)                             | Good (B)             | Satisfactory (C)                                | Unsatisfactory |
|----------------------------|-------------------------------------------|----------------------|-------------------------------------------------|----------------|
|                            | Clearly and<br>eloquently<br>articulated. | Clearly articulated. | Articulated, but<br>clarification is<br>needed. | Not stated.    |

| STEM Design<br>Process | Excellent (A)                                                                                                                                                            | Good (B)                                                                                                                                      | Satisfactory (C)                                                                                                   | Unsatisfactory                                           |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Design Process         | Clearly articulates<br>and illustrates how<br>learners will<br>recognize and<br>apply the<br>components of the<br>engineering design<br>process as found in<br>the task. | Articulates how<br>learners will<br>recognize and<br>apply the<br>components of the<br>engineering design<br>process as found in<br>the task. | Articulates an<br>engineering design<br>process that is<br>generic and/or<br>superficial to the<br>challenge/task. | Does not articulate<br>an engineering<br>design process. |

| Mathematics and<br>Science<br>Concepts* | Excellent (A)                                                                                                                              | Good (B)                                                                                                                             | Satisfactory (C)                                                                                                 | Unsatisfactory                                                                                                         |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Science Concept<br>Identification       | Science concept is<br>clearly, accurately,<br>and sufficiently<br>identified and<br>developed within<br>the task/challenge.                | Science concept is<br>accurately<br>identified and<br>developed within<br>the task/challenge.<br>A little more detail<br>is needed.  | Science concept is<br>insufficiently<br>identified and/or<br>underdeveloped.                                     | Science concept is<br>not stated and/or<br>inaccurate.                                                                 |
| Science Concept<br>Explanation          | The ways that the<br>science concept<br>connects to the<br>task/challenge are<br>clearly,<br>sufficiently, and<br>accurately<br>explained. | The ways that the<br>science concept is<br>addressed by the<br>task/challenge is<br>explained. A little<br>more detail is<br>needed. | The ways that the<br>science concept is<br>addressed by the<br>task/challenge is<br>ambiguous and/or<br>generic. | The ways that the<br>science concepts is<br>addressed by the<br>task/challenge is<br>not stated or are in<br>accurate. |

| Mathematical<br>Concepts<br>Identification #1 | Model, illustration<br>or representation of<br>mathematics is<br>clearly explained<br>within the<br>task/challenge.                                                              | Mathematical<br>concept is<br>identified and<br>developed within<br>the task/challenge.<br>A little more detail<br>is needed.       | Mathematical<br>concept is<br>insufficiently<br>identified and/or<br>underdeveloped<br>and/or inaccurate.                | Mathematical<br>concept is not<br>stated.                                                                                |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Mathematical<br>Concept<br>Explanation #1     | The ways that the<br>mathematical<br>concept is situated<br>and understood<br>within the<br>mathematical<br>model is clearly,<br>sufficiently, and<br>accurately<br>articulated. | The ways<br>mathematical<br>concept is<br>addressed by the<br>task/challenge is<br>explained. A little<br>more detail is<br>needed. | The ways that the<br>mathematical<br>concept is<br>addressed by the<br>task/challenge is<br>ambiguous and/or<br>generic. | The ways that the<br>mathematical<br>concept is<br>addressed by the<br>task/challenge is<br>not stated or<br>inaccurate. |
| Mathematical<br>Concepts<br>Identification #2 | Model, illustration,<br>or representation of<br>mathematics is<br>clearly explained<br>within the<br>task/challenge.                                                             | Mathematical<br>concept is<br>identified and<br>developed within<br>the task/challenge.<br>A little more detail<br>is needed.       | Mathematical<br>concept is<br>insufficiently<br>identified and/or<br>underdeveloped<br>and/or inaccurate.                | Mathematical<br>concept is not<br>stated.                                                                                |
| Mathematical<br>Concept<br>Explanation *2     | The ways that the<br>mathematical<br>concept is situated<br>and understood<br>within the<br>mathematical<br>model is clearly,<br>sufficiently, and<br>accurately<br>articulated. | The ways<br>mathematical<br>concept is<br>addressed by the<br>task/challenge is<br>explained. A little<br>more detail is<br>needed. | The ways that the<br>mathematical<br>concept is<br>addressed by the<br>task/challenge is<br>ambiguous and/or<br>generic. | The ways that the<br>mathematical<br>concept is<br>addressed by the<br>task/challenge is<br>not stated or<br>inaccurate. |

|           |                                                                                                               | <u> </u>                                                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prototype | Prototype is<br>available for demo<br>of complete<br>challenge and for<br>engaging visitors<br>in mini tasks. | Prototype is not<br>available for demo<br>of complete<br>challenge,<br>and/or<br>Prototype is not<br>designed for<br>engaging visitors<br>in mini tasks. |

| Poster details               | Excellent (A)                                                                                                                                          | Good (B)                                                                                                         | Satisfactory (C)                                                                                                                             | Unsatisfactory                                    |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Digital Design<br>and Layout | Design and layout,<br>images and<br>annotations<br>enhance the<br>demonstration,<br>support<br>communication,<br>and are<br>aesthetically<br>pleasing. | Design and layout,<br>images and<br>annotations<br>enhance the<br>demonstration and<br>support<br>communication. | Design and layout,<br>images and<br>annotations do not<br>enhance the<br>demonstration and<br>do not adequately<br>support<br>communication. | Poster does not<br>have images or<br>annotations. |
| Attention<br>Grabbing        | Draws visitors in.                                                                                                                                     | Conveys<br>information but<br>does not grab<br>attention.                                                        | Information is<br>confusing and does<br>not grab attention.                                                                                  | Is aesthetically<br>unpleasing                    |

# LT3B – Building Understanding of STEM components through Reflection

Compose an individual narrative (500 words maximum) on the engineering design process and the nature of participatory work. It can be submitted in any medium (e.g., text, audio, video etc.) The medium for this narrative is open and should include:

- Engineering Design: Articulate an engineering design process and relate the process to your experience in the design challenge.
- Group work: Your group's understanding of the nature of participatory work and the kinds of dispositions and habits that individuals working in teams need to hone. Draw upon the *Guide to Assessing Teamwork and Collaboration* that is posted in the D2L site for this course.
- Implication for Teaching Practice: Self-reflection in the process of learning and how this will inform your teaching practice.

| Narrative      | Excellent (A)                                                                                                                                                        | Good (B)                                                                                                                                                                                | Satisfactory (C)                                                                                                                                                                            | Unsatisfactory                                                                                                                                                       |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design process | An engineering<br>design process is<br>clearly and<br>eloquently<br>articulated in the<br>context of the<br>specific task.                                           | An engineering<br>design process is<br>articulated in the<br>context of the<br>specific task. A<br>little more detail<br>and specifics is<br>warranted.                                 | An engineering<br>design process is<br>partially<br>articulated in the<br>context of the<br>specific task.                                                                                  | An engineering<br>design process is<br>not articulated<br>and/or how you<br>engaged in the<br>design process is<br>not explained.                                    |
| Group work     | Depth of<br>understanding of<br>the nature of<br>participatory work<br>and the kinds of<br>dispositions and<br>habits required by<br>individuals<br>working in teams | Depth of<br>understanding of<br>the nature of<br>participatory work<br>and the kinds of<br>dispositions and<br>habits required by<br>individuals<br>working in teams<br>is articulated. | Depth of<br>understanding of<br>the nature of<br>participatory work<br>and the kinds of<br>dispositions and<br>habits required by<br>individuals<br>working in teams<br>is superficially or | Depth of<br>understanding of<br>the nature of<br>participatory work<br>and the kinds of<br>dispositions and<br>habits required by<br>individuals<br>working in teams |

#### LT3B Formative and Summative Assessment Rubric:

| Narrative                       | Excellent (A)                                                                                                                         | Good (B)                                                                                                                 | Satisfactory (C)                                                                              | Unsatisfactory                                                                                |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                 | is insightful and clearly articulated.                                                                                                |                                                                                                                          | generically<br>articulated.                                                                   | is insufficiently developed.                                                                  |
| Composition of the<br>Narrative | Concise, clear<br>clean wording and<br>composition<br>render the work<br>accessible,<br>unambiguous, and<br>sufficiently<br>engaging. | The wording and<br>composition<br>render the work<br>accessible, mostly<br>unambiguous, and<br>sufficiently<br>engaging. | The wording and<br>composition are<br>too ambiguous,<br>and/or<br>insufficiently<br>engaging. | The wording and<br>composition are<br>too ambiguous,<br>and/or<br>insufficiently<br>engaging. |
| References                      | Clearly stated;<br>Accurately APA<br>referenced.                                                                                      | Stated; APA<br>referenced with<br>minor errors.                                                                          | unclear;<br>Referenced but<br>not APA.                                                        | Not stated or<br>unclear; not<br>referenced.                                                  |
| Word limit                      | Adheres to 500-<br>word limit.                                                                                                        | Is within 10% of word limit.                                                                                             | Is within 20% of word limit.                                                                  | Does not adheres<br>to word limit.                                                            |

#### THE EXPECTATION OF EXCELLENCE IN PROFESSIONAL WORK

Please review the Academic Calendar carefully. It describes the program and provides detailed schedules and important dates. It contains information on expectations for student work and professional conduct. In addition, procedures are described regarding concern about student performance in the program. Please pay especially careful attention to details and descriptions in the following topic areas:

# • The Importance of Attendance and Participation in Every Class

As this is a professional program, experiences are designed with the expectation that all members will be fully involved in all classes and in all coursework experiences. As you are a member of a learning community your contribution is vital and highly valued, just as it will be when you take on the professional responsibilities of being a teacher. We expect that you will not be absent from class with the exception of documented instances of personal or family illness or for religious requirements.

#### • Engagement in Class Discussion and Inquiry

Another reason for the importance of attendance and participation in every class is that the course involves working with fellow students to share ideas and thinking. For example, each class you will work with a small group to engage fellow students in discussions on work being considered in class. You will also help other groups by providing ideas for scholarly inquiry in assignments. If you find that you are experiencing difficulties as a group collaborating, please inform the instructor.

#### EXPECTATIONS FOR WRITING

All written assignments (including, to a lesser extent, written exam responses) will be assessed at least partly on writing skills. Writing skills include not only surface correctness (grammar, punctuation, sentence structure, etc.) but also general clarity and organization. Sources used in research papers must be properly documented. If you need help with your writing, you may use the writing support services in the Learning Commons. For further information, please refer to the official online University of Calgary Calendar, Academic Regulations, E. Course Information, E.2: Writing Across the Curriculum: <u>http://www.ucalgary.ca/pubs/calendar/current/e-2.html</u>

#### LATE SUBMISSIONS

All late submissions of assignments must be discussed with the instructor **prior to the due date.** Students may be required to provide written documentation of extenuating circumstances (e.g. statutory declaration, doctor's note, note from the University of Calgary Wellness Centre, obituary notice). A deferral of up to 30 days may be granted at the discretion of the Associate Dean of Undergraduate Programs with accompanying written evidence.

#### ISSUES WITH GROUP TASKS

With respect to group work, if your group is having difficulty collaborating effectively, please contact the instructor immediately. If a group is unable to collaborate effectively or discuss course materials online in a timely manner, the instructor may re-assign members to different groups or assign individual work for completion.

| Grade | <b>GPA Value</b> | %               | Description per U of C Calendar                                                            |
|-------|------------------|-----------------|--------------------------------------------------------------------------------------------|
| A+    | 4.0              | 95-100          | Outstanding                                                                                |
| А     | 4.0              | 90-94           | Excellent – Superior performance showing comprehensive understanding of the subject matter |
| A-    | 3.7              | 85-89           |                                                                                            |
| B+    | 3.3              | 80-84           |                                                                                            |
| В     | 3.0              | 75-79           | Good - clearly above average performance with knowledge                                    |
|       |                  |                 | of subject matter generally complete                                                       |
| B-    | 2.7              | 70-74           |                                                                                            |
| C+    | 2.3              | 65-69           |                                                                                            |
| С     | 2.0              | 60-64           | Satisfactory - basic understanding of the subject matter                                   |
| C-    | 1.7              | 55-59           |                                                                                            |
| D+    | 1.3              | 52-54           | Minimal pass - Marginal performance                                                        |
| D     | 1.0              | 50-51           |                                                                                            |
| F     | 0.0              | 49 and<br>lower | Fail - Unsatisfactory performance                                                          |

#### GRADING

Students in the B.Ed. program must have an overall GPA of 2.5 in the semester to continue in the program without repeating courses.

#### Academic Accommodation

It is the student's responsibility to request academic accommodations according to the University policies and procedures listed below. The student accommodation policy can be found at: <u>https://www.ucalgary.ca/legal-services/sites/default/files/teams/1/Policies-Student-Accommodation-Policy.pdf</u>. Students needing an accommodation because of a disability or medical condition should communicate this need to Student Accessibility Services in accordance with the Procedure for Accommodations for Students with Disabilities: <u>ucalgary.ca/legal-services/sites/default/files/teams/1/Policies-Accommodation-for-Students-with-Disabilities-Procedure.pdf</u>. Students needing an accommodation in relation to their coursework based on a Protected Ground other than Disability, should communicate this need, preferably in writing, to their Instructor.

#### **Academic Misconduct**

For information on academic misconduct and its consequences, please see the University of Calgary Calendar at <u>http://www.ucalgary.ca/pubs/calendar/current/k.html</u>

#### **Attendance/ Prolonged Absence**

Students may be asked to provide supporting documentation for an exemption/special request. This may include, but is not limited to, a prolonged absence from a course where participation is required, a missed course assessment, a deferred examination, or an appeal. Students are encouraged to submit documentation that will support their situation. Supporting documentation may be dependent on the reason noted in their personal statement/explanation provided to explain their situation. This could be medical certificate/documentation, references, police reports, invitation letter, third party letter of support or a statutory declaration etc. The decision to provide supporting documentation that best suits the situation is at the discretion of the student.

Falsification of any supporting documentation will be taken very seriously and may result in disciplinary action through the Academic Discipline regulations or the Student Non-Academic Misconduct policy.

# https://www.ucalgary.ca/pubs/calendar/current/n-1.html

The Freedom of Information Protection of Privacy Act prevents instructors from placing assignments or examinations in a public place for pickup and prevents students from access to exams or assignments other than their own. Therefore, students and instructors may use one of the following options: return/collect assignments during class time or during instructors' office hours, students provide instructors with a self-addressed stamped envelope, or submit/return assignments as electronic files attached to private e-mail messages.

For additional resources including, but not limited to, those aimed at wellness and mental health, student success or to connect with the Student Ombuds Office, please visit <u>https://www.ucalgary.ca/registrar/registration/course-outlines</u>

Education Students Association (ESA) President for the academic year is Claire Gillis, esa@ucalgary.ca.

Werklund SU Representative is Elsa Stokes, educrep@su.ucalgary.ca.